164 research outputs found

    Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure

    Full text link
    Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator (MI) as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling by sandwiching graphene between a ferrimagnetic insulator yttrium iron garnet (YIG) and hexagonal-boron nitride (h-BN) which also serves as a top gate dielectric. By sweeping the top-gate voltage, we observe Fermi level-dependent anomalous Hall conductance. As the Dirac point is approached from both electron and hole sides, the anomalous Hall conductance reaches 1/4 of the quantum anomalous Hall conductance 2e2/h. The exchange coupling strength is determined to be as high as 27 meV from the transition temperature of the induced magnetic phase. YIG/graphene/h-BN is an excellent heterostructure for demonstrating proximity-induced interactions in two-dimensional electron systems

    Sparse Complementary Pairs with Additional Aperiodic ZCZ Property

    Full text link
    This paper presents a novel class of complex-valued sparse complementary pairs (SCPs), each consisting of a number of zero values and with additional zero-correlation zone (ZCZ) property for the aperiodic autocorrelations and crosscorrelations of the two constituent sequences. Direct constructions of SCPs and their mutually-orthogonal mates based on restricted generalized Boolean functions are proposed. It is shown that such SCPs exist with arbitrary lengths and controllable sparsity levels, making them a disruptive sequence candidate for modern low-complexity, low-latency, and low-storage signal processing applications

    Alternating Direction Method of Multipliers for Constrained Iterative LQR in Autonomous Driving

    Full text link
    In the context of autonomous driving, the iterative linear quadratic regulator (iLQR) is known to be an efficient approach to deal with the nonlinear vehicle models in motion planning problems. Particularly, the constrained iLQR algorithm has shown noteworthy advantageous outcomes of computation efficiency in achieving motion planning tasks under general constraints of different types. However, the constrained iLQR methodology requires a feasible trajectory at the first iteration as a prerequisite. Also, the methodology leaves open the possibility for incorporation of fast, efficient, and effective optimization methods (i.e., fast-solvers) to further speed up the optimization process such that the requirements of real-time implementation can be successfully fulfilled. In this paper, a well-defined and commonly-encountered motion planning problem is formulated under nonlinear vehicle dynamics and various constraints, and an alternating direction method of multipliers (ADMM) is developed to determine the optimal control actions. With this development, the approach is able to circumvent the feasibility requirement of the trajectory at the first iteration. An illustrative example of motion planning in autonomous vehicles is then investigated with different driving scenarios taken into consideration. As clearly observed from the simulation results, the significance of this work in terms of obstacle avoidance is demonstrated. Furthermore, a noteworthy achievement of high computation efficiency is attained; and as a result, real-time computation and implementation can be realized through this framework, and thus it provides additional safety to the on-road driving tasks.Comment: 9 pages, 8 figure

    Neural Network iLQR: A New Reinforcement Learning Architecture

    Full text link
    As a notable machine learning paradigm, the research efforts in the context of reinforcement learning have certainly progressed leaps and bounds. When compared with reinforcement learning methods with the given system model, the methodology of the reinforcement learning architecture based on the unknown model generally exhibits significantly broader universality and applicability. In this work, a new reinforcement learning architecture is developed and presented without the requirement of any prior knowledge of the system model, which is termed as an approach of a "neural network iterative linear quadratic regulator (NNiLQR)". Depending solely on measurement data, this method yields a completely new non-parametric routine for the establishment of the optimal policy (without the necessity of system modeling) through iterative refinements of the neural network system. Rather importantly, this approach significantly outperforms the classical iterative linear quadratic regulator (iLQR) method in terms of the given objective function because of the innovative utilization of further exploration in the methodology. As clearly indicated from the results attained in two illustrative examples, these significant merits of the NNiLQR method are demonstrated rather evidently.Comment: 13 pages, 9 figure
    • …
    corecore